direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: D4xC22:C4, C25.22C22, C23.220C24, C24.206C23, C22.582+ 1+4, C2.1D42, C22:5(C4xD4), C24:11(C2xC4), C24:3C4:7C2, (C2xD4).339D4, (C22xD4):23C4, (C23xC4):6C22, (D4xC23).9C2, C2.1(D4:5D4), (C2xC42):15C22, C23.411(C2xD4), C23.7Q8:19C2, C22.99(C22xD4), C23.286(C4oD4), C23.23D4:10C2, C23.213(C22xC4), C22.111(C23xC4), (C22xC4).1241C23, C24.3C22:17C2, C2.C42:11C22, (C22xD4).607C22, C2.23(C22.11C24), (C2xC4xD4):9C2, C2.28(C2xC4xD4), (C2xC4):17(C2xD4), C4:1(C2xC22:C4), (C2xD4):41(C2xC4), (C4xC22:C4):36C2, (C22xC4):28(C2xC4), C22:1(C2xC22:C4), (C2xC4:C4):103C22, (C22xC22:C4):8C2, (C2xC22:C4):73C22, (C2xC4).452(C22xC4), C22.105(C2xC4oD4), C2.16(C22xC22:C4), (C2xD4)o(C2xC22:C4), SmallGroup(128,1070)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4xC22:C4
G = < a,b,c,d,e | a4=b2=c2=d2=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >
Subgroups: 1292 in 626 conjugacy classes, 196 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2xC4, C2xC4, D4, D4, C23, C23, C23, C42, C22:C4, C22:C4, C4:C4, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C24, C24, C2.C42, C2xC42, C2xC22:C4, C2xC22:C4, C2xC22:C4, C2xC4:C4, C4xD4, C23xC4, C23xC4, C22xD4, C22xD4, C22xD4, C25, C4xC22:C4, C24:3C4, C23.7Q8, C23.23D4, C24.3C22, C22xC22:C4, C2xC4xD4, D4xC23, D4xC22:C4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C4oD4, C24, C2xC22:C4, C4xD4, C23xC4, C22xD4, C2xC4oD4, 2+ 1+4, C22xC22:C4, C2xC4xD4, C22.11C24, D42, D4:5D4, D4xC22:C4
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 4)(2 3)(5 6)(7 8)(9 10)(11 12)(13 16)(14 15)(17 18)(19 20)(21 24)(22 23)(25 28)(26 27)(29 30)(31 32)
(5 14)(6 15)(7 16)(8 13)(9 31)(10 32)(11 29)(12 30)
(1 23)(2 24)(3 21)(4 22)(5 14)(6 15)(7 16)(8 13)(9 31)(10 32)(11 29)(12 30)(17 28)(18 25)(19 26)(20 27)
(1 8 27 10)(2 5 28 11)(3 6 25 12)(4 7 26 9)(13 20 32 23)(14 17 29 24)(15 18 30 21)(16 19 31 22)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(5,6)(7,8)(9,10)(11,12)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,28)(26,27)(29,30)(31,32), (5,14)(6,15)(7,16)(8,13)(9,31)(10,32)(11,29)(12,30), (1,23)(2,24)(3,21)(4,22)(5,14)(6,15)(7,16)(8,13)(9,31)(10,32)(11,29)(12,30)(17,28)(18,25)(19,26)(20,27), (1,8,27,10)(2,5,28,11)(3,6,25,12)(4,7,26,9)(13,20,32,23)(14,17,29,24)(15,18,30,21)(16,19,31,22)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(5,6)(7,8)(9,10)(11,12)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,28)(26,27)(29,30)(31,32), (5,14)(6,15)(7,16)(8,13)(9,31)(10,32)(11,29)(12,30), (1,23)(2,24)(3,21)(4,22)(5,14)(6,15)(7,16)(8,13)(9,31)(10,32)(11,29)(12,30)(17,28)(18,25)(19,26)(20,27), (1,8,27,10)(2,5,28,11)(3,6,25,12)(4,7,26,9)(13,20,32,23)(14,17,29,24)(15,18,30,21)(16,19,31,22) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12),(13,16),(14,15),(17,18),(19,20),(21,24),(22,23),(25,28),(26,27),(29,30),(31,32)], [(5,14),(6,15),(7,16),(8,13),(9,31),(10,32),(11,29),(12,30)], [(1,23),(2,24),(3,21),(4,22),(5,14),(6,15),(7,16),(8,13),(9,31),(10,32),(11,29),(12,30),(17,28),(18,25),(19,26),(20,27)], [(1,8,27,10),(2,5,28,11),(3,6,25,12),(4,7,26,9),(13,20,32,23),(14,17,29,24),(15,18,30,21),(16,19,31,22)]])
50 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 2T | 2U | 2V | 2W | 4A | ··· | 4L | 4M | ··· | 4Z |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C4oD4 | 2+ 1+4 |
kernel | D4xC22:C4 | C4xC22:C4 | C24:3C4 | C23.7Q8 | C23.23D4 | C24.3C22 | C22xC22:C4 | C2xC4xD4 | D4xC23 | C22xD4 | C22:C4 | C2xD4 | C23 | C22 |
# reps | 1 | 1 | 2 | 1 | 4 | 2 | 2 | 2 | 1 | 16 | 4 | 8 | 4 | 2 |
Matrix representation of D4xC22:C4 ►in GL6(Z)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -2 |
0 | 0 | 0 | 0 | 1 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -2 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | -1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -2 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,-2,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,-2,-1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,-2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
D4xC22:C4 in GAP, Magma, Sage, TeX
D_4\times C_2^2\rtimes C_4
% in TeX
G:=Group("D4xC2^2:C4");
// GroupNames label
G:=SmallGroup(128,1070);
// by ID
G=gap.SmallGroup(128,1070);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,346]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^2=c^2=d^2=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations